Strong Coupling of Localized Surface Plasmons to Excitons in Light-Harvesting Complexes
نویسندگان
چکیده
Gold nanostructure arrays exhibit surface plasmon resonances that split after attaching light harvesting complexes 1 and 2 (LH1 and LH2) from purple bacteria. The splitting is attributed to strong coupling between the localized surface plasmon resonances and excitons in the light-harvesting complexes. Wild-type and mutant LH1 and LH2 from Rhodobacter sphaeroides containing different carotenoids yield different splitting energies, demonstrating that the coupling mechanism is sensitive to the electronic states in the light harvesting complexes. Plasmon-exciton coupling models reveal different coupling strengths depending on the molecular organization and the protein coverage, consistent with strong coupling. Strong coupling was also observed for self-assembling polypeptide maquettes that contain only chlorins. However, it is not observed for monolayers of bacteriochlorophyll, indicating that strong plasmon-exciton coupling is sensitive to the specific presentation of the pigment molecules.
منابع مشابه
Aluminum Nanoantenna Complexes for Strong Coupling between Excitons and Localized Surface Plasmons.
We study the optical dynamics in complexes of aluminum nanoantennas coated with molecular J-aggregates and find that they provide an excellent platform for the formation of hybrid exciton-localized surface plasmons. Giant Rabi splitting of 0.4 eV, which corresponds to ∼10 fs energy transfer cycle, is observed in spectral transmittance. We show that the nanoantennas can be used to manipulate the...
متن کاملOn-Demand Coupling of Electrically Generated Excitons with Surface Plasmons via Voltage-Controlled Emission Zone Position
The ability to confine and manipulate light below the diffraction limit is a major goal of future multifunctional optoelectronic/plasmonic systems. Here, we demonstrate the design and realization of a tunable and localized electrical source of excitons coupled to surface plasmons based on a polymer light-emitting field-effect transistor (LEFET). Gold nanorods that are integrated into the channe...
متن کاملThe coupling between localized surface plasmons and excitons via Purcell effect
The coupling between localized surface plasmons (LSPs) within silver nanostructures and excitons in a silicon-rich silicon nitride (SiNx) matrix has been demonstrated via the Purcell effect. A simple model is employed for the estimation of the Purcell factor as well as the average position of excitons within a luminescence matrix. The estimated average position of the excitons is located at app...
متن کاملStrong plasmon-exciton coupling in a hybrid system of gold nanostars and J-aggregates
Hybrid materials formed by plasmonic nanostructures and J-aggregates provide a unique combination of highly localized and enhanced electromagnetic field in metal constituent with large oscillator strength and extremely narrow exciton band of the organic component. The coherent coupling of localized plasmons of the multispiked gold nanoparticles (nanostars) and excitons of JC1 dye J-aggregates r...
متن کاملAdjustable Plasmonic Bandgap in One-Dimensional Nanograting Based on Localized and Propagating Surface Plasmons
Compared to the long history of plasmonic gratings, there are only a few studies regarding the bandgap in the propagation of plasmonic surface waves. Considering the previous studies on interpretation of plasmonic bandgap formation, we discuss this phenomenon using the effect of both surface plasmon polariton (SPP) and localized surface plasmon (LSP) for our fabricated one-dimensional metallic-...
متن کامل